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Fingerboard geometry - further comments on Comms 2143 & 2153 
 
David van Edwards1 has suggested that I comment on the mathematics of fingerboard 
geometry discussed in 2143 & 2153; in particular the derivation of an ‘ideal’ shape of scoop 
or relief along the line of a string, to allow for low action when playing.  
 
First though we should discuss a common misconception about fingerboard shapes.  Given 
that the fingerboard on a string instrument should presumably lie as close to the strings as is 
practical, to minimise the effort in playing, we first consider the shape of the (virtual) 
surface in which the strings themselves lie and derive the optimum fingerboard shape from 
that. 
 
A confusion of cones… 

In 2143, Munck2, along with many othersa, makes a common assumption that if the string 
ends at the bridge and the nut both lie on circular arcs, then the surface that joins them is 
conicalb (or cylindrical if both radii are equal), and that therefore this should be the 
approximate shape of the fingerboard. Munk then points out that the strings may not align 
with this presumed cone and from this explains a ‘scoop’ in the fingerboard, presumably 
observed in the 1619 Jaye he discusses. The misconception is well described by Jaen3, but I 
will summarise the key points here. 

The actual surface we want is called a ruled surfacec, where each point on one curve is 
joined to a corresponding point on the other by a straight line – the strings on an instrument 
following a handful of these lines. To see the whole surface, add more and more strings in 
between the usual ones to gradually fill in the spaces.  

An equivalent approach that explains the name would be to lay a straight edge on both 
curves, and then smoothly drag it over both – the surface traced out by the straight edge is 
a ruled surface. In principle one could start with the straight edge joining any two arbitrary 
points on the curves and move each end at an arbitrary and perhaps varying speed, so there 
are an infinite number of different ruled surfaces passing through the two curves. 

Cones and cylinders are but a small subset of the set of all ruled surfaces – and we can 
choose any convenient curve for the bridge, and any other for the nut, independently, and 
then choose how to connect them, and we end up with a coherent surface in which all the 
strings lie.  The key point is that although such a surface may appear ‘scooped’ from some 
angles, it is perfectly straight along the strings, by definition – remember here we are 

 
a an online search for ‘conical’ or ‘compound radius’ and ‘fingerboard’ or ‘fretboard’ generates a lot of results. 
b Note that ‘cone’ is often taken to mean a very specific ‘right circular cone’ – to quote Munk “imagine [a…] 
parking cone”.  For a right circular cone, the circular arcs lie in a plane orthogonal to the cone’s axis – whereas 
circular sections measured along a fingerboard surface will be orthogonal to the surface, rather than to the 
imagined cone’s axis, and thus at an angle to said axis - so any such cone would have an elliptical rather than 
circular section.   
c Jaen appears not to have known of the term ‘ruled surface’, but the CAD system he used implemented them. 



describing the surface in which the strings lie.  The same can be said for the fingerboard – if I 
draw a curve offset from that of the nut, to correspond to the desired fretting height, and 
another offset from the bridge curve, and then drag my straight edge over these curves, I’ll 
trace out another ruled surface which could be the fingerboard. Munck points this out: “it is 
easy to check the geometry of the fingerboard by holding a straight-edge precisely along the 
trajectory of each of the strings”   

We can see that any ‘scoop’ that is observed in the fingerboard, when checked by holding a 
straight edge in line with the strings, is nothing to do with the geometry implied by cones, 
upside down or not.  An exaggerated example of the geometry described by Munck, with a 
smaller radius bridge than at the nutd, is shown in figure 1. We can see that the straight 
‘string’ lines do not intersect at a common point, so the surface, though well defined, is not 
any kind of cone; nor is there any ‘scoop’ along the strings. 

 

Figure 1 

 
d This geometry is used on some modern instruments, for example the electric bowed instruments from NS 
Design11.   



Whatever the desired curves at bridge and nut, a ruled surface is an entirely natural 
consequence of a straightforward way of making a fingerboard: after any rough shaping, the 
maker planes, or sands, along each string trajectory, giving a straight facet under each 
string, then blends these together.  Fingerboards can even be twisted, with claimed 
ergonomic benefits4,5. 

Optimising the fingerboard 

Now for instruments with significant amplitude of string vibration – particularly long, bass 
strings on instruments such as viols, cellos etc. – we will find that a ruled surface is slightly 
sub-optimal. To have sufficient clearance when stopping the string near the nut, we will 
have too much clearance near the bridge end. This is where a deliberate ‘scoop’ is desirable, 
to minimise that action further up the fingerboard whilst retaining sufficient clearance to 
enable the string to vibrate freely. As far as I can tell, this has mostly been implemented by 
makers’ rules of thumb – for example Kwan6 surveyed several violin makers for 
measurements of their instruments, but to no great conclusion. 

In ~2008, David van Edwards asked me if there was an ideal shape for this scoop. A 
simplified presentation of this follows, considering the shape along the path of an individual 
string. 

Problem statement 

Given a string stretched between nut and bridge anchoring points, what is the optimum 
shape of the fingerboard curve (f in figure 2) such that the string always just clears the 
fingerboard when vibrating, wherever it is fretted? 

 

Figure 2 

Assumptions 

We assume an ‘ideal’ string – infinitely thin and flexible, and that the pluck force is set at 
some fixed maximum for practical purposes. The shaded areas represent the maximum 
extent of string motion. For fretted instruments, the curve f represents the line through the 
top of the fret surfaces. 
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Analysis 

It is clear from figure 2 that the fingerboard curve f must always clear the shaded grey 
vibration extents to avoid buzzing.  The optimal curve is therefore the total envelope of 
each of these extents considered together, as the fretting point moves along that curve. This 
means that the tangente to the fingerboard curve at the fretting point should be aligned 
with the tangent to the lower portion of the vibration extent at that point. As illustrated 
above, the curve f could be made shallower without impinging on the string vibration; if the 
tangent to f were to be above the vibration tangent, the string would hit the curve.  

So we need to find an expression for the vibration tangent at each point on the curve, as 
this will determine the shape we require. 

Extent of vibrating string 

Figure 3 

Consider the string above of length L, at tension T, and plucked (or bowedf) at a distance x 
with a force p.  The deflection d(x) will be given by balancing p against the tensiong in the 
string, i.e. when 

𝑝𝑝 = 𝑇𝑇
𝑑𝑑(𝑥𝑥)
𝑥𝑥

+ 𝑇𝑇
𝑑𝑑(𝑥𝑥)
𝐿𝐿 − 𝑥𝑥

 

We can rearrange this to give 

𝑑𝑑(𝑥𝑥) =
𝑝𝑝(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

𝐿𝐿𝐿𝐿
   (1)  

which is a parabola with a maximum deflection of  𝑝𝑝𝑝𝑝
4𝑇𝑇

 

No matter how the string vibrates once plucked, the maximum possible deflection at any 
point x along the string is given by the equation d(x), independent of where we initially 
plucked, as to do so would require more energy than has been put in by that pluck. 

Using approximate values for an example classical guitar string, T=62N, L=0.6m, p=1N (about 
100g), we see the maximum deflection is about 2.4mm (figure 4). For most playing styles, 
most of this displacement is from side to side, rather than up and down; here we need only 
consider the component of the displacement towards the fingerboard – this will typically be 

 
e ie the slope of the curve. 
f For this analysis, we can regard bowing as repeated plucking as the string sticks and then slips against the 
bow. 
g We ignore the very slight increase in tension caused by the string’s deflection. 
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a rather smaller value. After release, the kink in the string initially at the pluck point bounces 
back and forth along the string, gradually reducing in amplitude (until the next pluck or 
stick/slip). This motion is not intuitive but has been shown by high-speed filming7,8. 

 

Figure 4 

As it is the tangent that we need, this is given by the derivative of equation (1): 

𝑑𝑑′(𝑥𝑥) =
𝑝𝑝(𝐿𝐿 − 2𝑥𝑥)

𝐿𝐿𝐿𝐿
  

Which at x=0 is 

𝑑𝑑′(0) =
𝑝𝑝𝑝𝑝
𝐿𝐿𝐿𝐿

=
𝑝𝑝
𝑇𝑇

 

We have the rather nice result that the derivative at each end is just the ratio of the 
plucking force to the tension in the string, regardless of the length of the string.  This means 
that the angle ϴ on the first diagram has the same value, wherever we fret, and is just a 
function of this ratio. From now on we’ll call this ratio R, as for the purposes of this analysis 
we don’t need to vary both p and T. 

In the original version of this paper, I made rather heavyweight use of some mathematics 
software to derive the resulting fingerboard shape, which can be expressed in parametric 
form as follows: 

𝑥𝑥(𝑡𝑡) = −𝑒𝑒−𝑡𝑡𝐿𝐿 cos(𝑅𝑅 (−𝑡𝑡));               𝑦𝑦(𝑡𝑡) = 𝑒𝑒−𝑡𝑡𝐿𝐿 sin(𝑅𝑅 (−𝑡𝑡)) 

where we use -t as the parameter as that conveniently gives us the nut position at x = -L at 
t=0 and the curve spirals towards the bridge at x = 0.  The exaggerated curve is shown in 
figure 5 for L = 1m, and R set to 2 (implying a plucking force of twice the string tension!).  

 

Figure 5 
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This curve is known variously as the logarithmic spiral, spira mirabilis or equiangular spiral, 
and is commonly seen in the spiral growth of shells. It is this last name that gives us the clue 
to a more straightforward derivation – it is called equiangular as the line drawn from the 
origin to any point on the curve always makes the same angle with the curve at that point.  
We could have simply observed that the requirement for a constant value for the tangent to 
the vibration extent directly implies this spiral.  A more realistic example plot is given in 
figure 6 for an R value of 0.02, i.e. a pluck force of 2% of the string tension. In this case the 
maximum distance from the open string line to the fingerboard surface is about 4.4mm. 

 

Figure 6 

 Notes 

The curvature steadily increases towards the bridge. I’ve only plotted up to 15cm from the 
bridge, as that would correspond to the 24th fret position; the y scale is exaggerated.  The 
curve is fairly flat before the 18/19th fret position – a straight edge laid between the nut and 
the 19th fret position would show a maximum deviation of ~1mm for this plucking 
force/tension ratio. Of most interest is that the scoop is concentrated at the bridge end of 
the fingerboard. For instruments such as guitars, the slight bend in the neck induced by the 
string tension usually gives plenty of curve – modern steel strung guitars use a truss rod 
which can be tightened to reduce this bend.  

Caveats 

This was for an ideal string; real strings are stiff and have appreciable thickness. Stiffness will 
restrict the range of motion relative to the ideal case, so this analysis should be on the safe 
side.  To account for string thickness, we should offset this curve by half the string diameter, 
but this will have a negligible effect for normal string thicknesses. 

Prior work 

The use of the logarithmic spiral has been proposed before, but I’ve not been able to find a 
coherent presentation in the literature. The closest is Liu Jingye9, who assumes that a 
constant angle between stopped string and fingerboard is desirable (versus a ‘straight’ 
fingerboard, where the angle will increase as one moves up the board) but does not justify 
the why a constant angle is desirable. Interestingly Segerman10 in FoMRHI 71 compares 
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straight, parabolic and logarithmic spiral shapes, again stating that the latter gives a 
constant angle between string and fingerboard, but again does not justify why that is 
appropriate. He also refers to ‘inharmonicity and energy extraction expanding the vibration 
envelope’ – it seems to me that such factors would if anything limit the envelope, but I may 
be missing something here. 
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